Tumor Cell-Independent Estrogen Signaling Drives Disease Progression through Mobilization of Myeloid-Derived Suppressor Cells.

نویسندگان

  • Nikolaos Svoronos
  • Alfredo Perales-Puchalt
  • Michael J Allegrezza
  • Melanie R Rutkowski
  • Kyle K Payne
  • Amelia J Tesone
  • Jenny M Nguyen
  • Tyler J Curiel
  • Mark G Cadungog
  • Sunil Singhal
  • Evgeniy B Eruslanov
  • Paul Zhang
  • Julia Tchou
  • Rugang Zhang
  • Jose R Conejo-Garcia
چکیده

The role of estrogens in antitumor immunity remains poorly understood. Here, we show that estrogen signaling accelerates the progression of different estrogen-insensitive tumor models by contributing to deregulated myelopoiesis by both driving the mobilization of myeloid-derived suppressor cells (MDSC) and enhancing their intrinsic immunosuppressive activity in vivo Differences in tumor growth are dependent on blunted antitumor immunity and, correspondingly, disappear in immunodeficient hosts and upon MDSC depletion. Mechanistically, estrogen receptor alpha activates the STAT3 pathway in human and mouse bone marrow myeloid precursors by enhancing JAK2 and SRC activity. Therefore, estrogen signaling is a crucial mechanism underlying pathologic myelopoiesis in cancer. Our work suggests that new antiestrogen drugs that have no agonistic effects may have benefits in a wide range of cancers, independently of the expression of estrogen receptors in tumor cells, and may synergize with immunotherapies to significantly extend survival. SIGNIFICANCE Ablating estrogenic activity delays malignant progression independently of the tumor cell responsiveness, owing to a decrease in the mobilization and immunosuppressive activity of MDSCs, which boosts T-cell-dependent antitumor immunity. Our results provide a mechanistic rationale to block estrogen signaling with newer antagonists to boost the effectiveness of anticancer immunotherapies. Cancer Discov; 7(1); 72-85. ©2016 AACR.See related commentary by Welte et al., p. 17This article is highlighted in the In This Issue feature, p. 1.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple Low Doses of 5-Fluorouracil Diminishes Immunosuppression by Myeloid Derived Suppressor Cells in Murine Melanoma Model

Background: Melanoma progression and metastasis is suggested to be mediated by increased accumulation of myeloid derived suppressor cells. Various chemotherapeutic drugs such as 5-Fluorouracil in single low concentration have the capacity, at least in part, to reverse tumor progression by reducing myeloid derived suppressor cellsmediated immunosuppression. Objective: To assess whether multiple ...

متن کامل

TNF signaling drives myeloid-derived suppressor cell accumulation.

TNF, an inflammatory cytokine that is enriched in the tumor microenvironment, promotes tumor growth and subverts innate immune responses to cancer cells. We previously reported that tumors implanted in TNF receptor-deficient (Tnfr-/-) mice are spontaneously rejected; however, the molecular mechanisms underlying this rejection are unclear. Here we report that TNF signaling drives the peripheral ...

متن کامل

Regulatory T Cells and Myeloid-Derived Suppressor Cells in Patients with Peptic Ulcer and Gastric Cancer

Background: Regulatory T Cells (Tregs) and Myeloid-Derived Suppressor Cells (MDSCs) are two main regulatory cells modulating the immune responses in inflammation and cancer. Objective: To investigate and compare Tregs and MDSCs in peptic ulcer and gastric cancer. Methods: Patients with dyspepsia were selected and divided into three groups of non-ulcer dyspepsia (NUD, n=22), peptic ulcer disease...

متن کامل

Activation of Hematopoietic Stem/Progenitor Cells Promotes Immunosuppression Within the Pre-metastatic Niche.

Metastatic tumors have been shown to establish microenvironments in distant tissues that are permissive to disseminated tumor cells. Hematopoietic cells contribute to this microenvironment, yet the precise initiating events responsible for establishing the pre-metastatic niche remain unclear. Here, we tracked the developmental fate of hematopoietic stem and progenitor cells (HSPC) in tumor-bear...

متن کامل

Tumor STAT1 transcription factor activity enhances breast tumor growth and immune suppression mediated by myeloid-derived suppressor cells.

Previous studies had implicated the IFN-γ transcription factor signal transducer and activator of transcription 1 (STAT1) as a tumor suppressor. However, accumulating evidence has correlated increased STAT1 activation with increased tumor progression in multiple types of cancer, including breast cancer. Indeed, we present evidence that tumor up-regulation of STAT1 activity in human and mouse ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cancer discovery

دوره 7 1  شماره 

صفحات  -

تاریخ انتشار 2017